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set to .TRUE. only if there are failures or im-
provements in objective function value; less
than ¢ after considering values of &, from 1 to
%, in one complete cycle.

The variables a,, &, B, ¢, €, 1, &%, ¥i, k, k., and n are
initially assigned values on entry to the grazor search
package. The subroutine ANAL(®, ¥;, DERIV, &, ¥;, VYy,)
is an analysis program to evaluate v; and/or Vy,; at a
given point ¢. The function subprogram Y(é, ¥:, k)
calculates the v; corresponding to the point ¢ by calling
ANAL. The subroutine LOCATE (¢, s, k, #, U,) evaluates
the objective function Uy by calling Y(é, ¢y, k) for
i=1, 2, <, .
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Anomalous Loss at a Ferrite Boundary

LEONARD LEWIN, ASSOCIATE MEMBER, IEEE

Abstract—The occurrence of anomalous loss and its explanation
in terms of surface waves is discussed. For this type of explanation
to be possible the region of occurrence of the surface wave must at
least straddle the region of anomalous loss. It is shown that this is
so, particularly for the case when there is a mixed air-ferrite surface
layer for which this result is not obvious: as the air content de-
creases, a ferrite-metal surface wave appears and takes over the
function of the layer wave.
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The means by which these waves are generated, and the deter-
mination of their amplitudes, appear to require a new physical prin-
ciple to be applied. A new type of “edge condition” is postulated.

I. INTRODUCTION

HE FIRST intimation that something peculiar
Tcould be happening in a waveguide—ferrite con-
figuration appeared in a paper by Lax and Button
[1] and led to the so-called “thermodynamic paradox,”
in which energy could apparently be conveyed in only
one direction in a lossless medium. Bresler [2] at-
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tempted to resolve the difficulty by a consideration of
a surface-wave mode, and other explanations are also
current [3]-[6]. In all these cases attention was
focused primarily on the existence of energy-carrying
modes, but without concern as to how these modes
were to be excited.

In a quasi-static solution to the problem of reflection
at a transversely magnetized ferrite block in a rec-
tangular waveguide, Lewin [7] pointed out that there
was an anomalous region in which the discontinuity
admittance contained a substantial resistive part despite
the assumed absence of material losses. The anomalous
region occurs when the internal biasing field H,, the
angular frequency w, and the saturation magnetiza-
tion M, are related by the inequality 'y|H0+M0/2[
<w <'y[Ho+M o/, where v (positive) is the gyromag-
netic ratio. Here it is convenient to define wy =+ | H,|
and wM='y| Mol. The sign of Hy and M, is, in a sense,
arbitrary, and determines whether the energy absorp-
tion effect occurs at the wall x =0 or x =a. [t appears in
the form of a “hot line” at the intersection of the fer-
rite—air interface and the guide wall.

The reality of, and explanation for, this anomalous
loss has been the subject of a number of papers [8]-
[15], whose essential conclusions are discussed later.
Although the phenomenon has not, apparently, been
put to any practical use, it is not unimportant for the
following reasons.

1) It could interfere with the correct operation of a
microwave device whose design did not adequately take
into account its possible occurrence.

2) Since it apparently leads to the generation of
very large microwave magnetic fields, it could cause the
appearance locally of nonlinear phenomena in situa-
tions in which only linear (small-signal) effects are ex-
pected.

3) The manner of operation of the uniqueness
theorem in electromagnetic theory, and the possibility
of expansion of waveguide fields as a sum of modes
under all possible circumstances, is questioned from an
unusual point of view.

4) The possibility of “intrinsic loss” due to infinite
energy concentration in nominally lossless materials
has been suggested as a loss mechanism, and the valid-
ity of this thesis requires clarification.

5) The operation of a hitherto unsuspected con-
straint on the order of infinity which can be admitted
near a field singularity is involved and the validity and
cause of this limitation requires elucidation.

Of course, all materials are lossy, even if only to a
small extent, so considerations of purely lossless con-
ditions may seem academic. But usually as the loss
parameter goes to zero so do the actual losses. This is
not so in the case of a ferrite working in the anomalous
region, and a certain amount of closely argued analysis,
in places bordering rather dangerously on hair splitting,
is necessary to disentangle the different factors at work.
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It will be considered here that “lossless” means “in the
limit of zero loss parameter,” the essential feature being
the limiting process. The only attempt to deal with a
strictly zero loss problem [11] was not successful, and
no meaning is given here to zero loss in this strict sense.

Although the reality of the anomalous loss phe-
nomenon has been vividly demonstrated [12], [15], and
is not in dispute, the causative mechanism has been
variously allocated to crack waves [8], metal-boundary
surface waves [3], [9], and intrinsic loss [4]. In a
practical situation all three effects are probably present
and are presumably all aspects of one and the same
phenomenon, which seems related to a high concentra-
tion of microwave energy near the ferrite boundary.
Hurd, in a recent paper [14], has endeavored to make
a case for the intrinsic loss mechanism only, to the ex-
clusion of the surface-wave or crack-wave explanations.
This claim is examined here, and it is shown that his
results are quite compatible with the existence of these
waves, The matter is not a purely academic one, since
the strength of the microwave magnetic fields at the
ferrite boundary is different in the two cases.

II. DiscussioN oF THE PrREVIOUS RESULTS

Lewin [8] accepted the reality of the anomalous
loss effect, and attempted to explain it as due to
Bresler's [2] “crack wave,” a wave shown to occur in
the minute crack assumed to exist between the ferrite
and waveguide wall. This explanation was not very con-
vincing because the original analysis had ignored any
such wave. The analysis of the boundary field as an
infinite sum of waveguide modes, normally considered
adequate in these problems, becomes suspect if a crack
wave must also be considered. The usual mode expan-
sion is contingent on the conditions for validity of a
Fourier sine series expansion, and this includes a re-
quirement of limited fluctuation [16]. In the present
instance, in the absence of the crack wave, the magnetic
field near the wall x =a varies as (e —x)'?», where p is
a complex parameter with 0< Re p<1. The fluctua-
tions are like the sine and cosine of [2 log (a—x) Im p]
and have zero period as x—a. So a reason for something
unusual happening at x=a certainly exists; and
Bresler's crack wave seemed just what was needed,
since its possible occurrence was in exactly the same
range of parameters as that of the anomalous loss.
Perhaps too much was made of this coincidence in the
earlier papers. What is essential for such an explanation,
however, is that the region of existence of the crack
wave should at least siraddle that of the anomalous
loss; it should always be possible for the wave to be
there when needed. (It is perhaps unimportant if the
wave could exist outside the region where it is really
wanted to provide the explanation of the loss mech-
anism.)

Barzilai and Gerosa [3] considered an alternative
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cause of loss, a surface wave at the ferrite-metal bound-
ary at the waveguide wall. This wave is very lossy and
has a complex propagation coefficient

Jwpoo

e e DA

where u and « are the elements of the {errite permeabil-
ity tensor and ¢ is the metal conductivity. The wave
exists as an actual electromagnetic entity provided the
attenuation is positive, or Re y¥>0. This requires k>pu
and also o> (u—«)2% Since (u—k)/uo=1+wun/
(wg —w+ja), where wyr, wg, and «, the loss parameter,
depend on the ferrite properties, these conditions give
(wr+wwr/2) <w<(wg+wiy) as a—0. This is just the
anomalous region, so that the existence of the boundary
wave is guaranteed when it is needed to explain the loss
mechanism,

In a subsequent paper [9] Gerosa proceded to analyze
the ferrite configuration, taking into account this sur-
face wave. Various approximations were made, con-
sistent with the metal conductivity being large, and an
integral equation was eventually obtained identical
with Lewin’s original one except for the addition of a
surface-wave term.

This analysis is noteworthy for two reasons. It was
the first which sought to take account of a surface wave
ab initio. And it contained an arbitrary amplitude of the
surface wave. An attempt was made to determine this
amplitude from orthogonality considerations, but this
turned out to be unsatisfactory, and at this stage it
subsequently became clear that the problem was in
some sense inadequately defined. This was brought out
fully in a later paper by Lewin [10], who showed that
all the usual boundary conditions were met, even in the
absence of the surface wave. And, in fact, since it was not
needed under those conditions when, in any case, it
could not exist, the solution obtained in that range of
parameters, the normal or “nonanomalous” range, must
continue to satisfy Maxwell’s equations and the bound-
ary conditions also in the anomalous range, since the
geometry had not changed merely by virtue of changing,
say, the ferrite magnetization. The peculiar situation
was reached that a solution had been obtained, which
according to electromagnetic theory must be a unique
one, and vet in the anomalous region an apparently
arbitrary amount of surface wave could be added. Either
this surface wave was a spurious entity, or else some
other rather recondite condition must determine its
amplitude.

There seems to be no escape from this conclusion.
Lewin [10] postulated a new condition, somewhat
analogous to an edge condition: A restraint on the
possible order of infinity of the magnetic field at the
edge of the boundary. This enabled a unique solution to
be found. It needs to be stressed that, without this con-
dition, or some other similar principle, the solution con-
tains an arbitrary undetermined constant. To ignore the
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surface wave (by taking its amplitude as zero) is, of
course, equally arbitrary, and whether or not it is the
cause of the anomalous loss, something has to determine
its amplitude. This something is necessarily new, since
all the usual boundary conditions, field matching, etc.,
have already been used in setting up the problem.
Lewin’s postulate, if correct, ought to be obtainable
from some physical principle, such as finiteness of
stored energy, or the like. So far this has not been dem-
onstrated, and its validity must be considered tenta-
tive.

An attempt to bypass all these troubles was made in
a paper by Mittra and Lee [11] in which the ferrite loss
was taken to be accurately zero from the start. Their
solution, however, is faulty [5], [13] in that it fails to
give zero tangential electric field at the guide walls, as
well as implying a nonphysical negative loss if the
ferrite is slightly lossy.

Hurd [6] opts for a concept labeled “intrinsic loss.”
Essentially, if the ferrite is lossy, with loss parameter ¢,
then, as & goes to zero, the permeability tensor can be
put in the form [u]a+a[u]xm, where H and NH stand
for Hermitian and non-Hermitian, respectively. The
first term gives no loss, and the second term could do so
if the magnetic field became infinite as o went to zero
in such a way that a finite product resulted. Hurd [4]
demonstrates this possibility, but clearly the conclusion
is affected if a surface wave can be present of such form
and magnitude as to cancel the dominant infinity of the
magnetic field. This is just the effect of Lewin’s postu-
late, and although its validity has not yet been dem-
onstrated, it is worth reiterating that some such prin-
ciple is needed to obtain a unique solution to the prob-
lem.

III. A FERRITE-LAYER WAVE

Hurd [14] comments, and validly so, that to assume
an air crack between ferrite and guide wall is too ar-
bitrary, and that if an imperfection of this sort is to be
examined, the parameters of the crack infilling should
more realistically involve the constants of the ferrite,
air, and metal boundary. He actually examines a fer-
rite infilling of arbitrary parameters intermediate be-
tween air and the main ferrite and shows that it can
support a surface wave (in fact three surface waves)
which reduces to Bresler's crack wave for a wholly air
boundary. But in general the conditions for existence of
this wave differ noticeably from the conditions for
existence of the anomalous region. From this, Hurd
concludes that the association of the surface wave with
the anomalous loss is rendered rather unlikely.

In fact the association would be impossible unless
there were a sufficient overlap—the anomalous region,
if not coinciding with the surface-wave region, must be
inside it. We proceed to show, with an appropriate
proviso, that this is indeed so, thus rendering permissi-
ble the surface-wave interpretation.
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Fig. 1. Location of anomalous regions for main ferrite @ and sur-
face layer (. The arrow indicates the movement of the anomalous
region of the surface layer as its ferrite content (and hence mag-
netization) is increased. The position marked A represents the
location of the value of w for the lower limit of anomalous loss in
the main ferrite.

Let us look a little more closely at this “crack” layer
from two extreme points of view: Near-air composition,
and near-main-ferrite composition. We suppose the
frequency to lie in the anomalous range (wr1twari/2)
<w < (wa1twan) for the main ferrite, using subscripts 1
for this ferrite and 2 for the crack layer. Then for near-
air composition the condition of the layer would corre-
spond to very weak magnetization, with w>>(wn2+waz),
so that the layer is in the nonanomalous condition.
Under these circumstances Hurd’s equations (8) de-
termine a surface wave in the region 7; <w < (wm1+wu1)
where 7, (the negative of Hurd's 7;) can be readily
shown to be less than (wmi+1/2). Hence this range
indeed straddles the anomalous range, and it does so
until, with increasing magnetization, 7, has to be re-
placed by (ws:+was). This occurs at a value approxi-
mately given by was=wa1/3, after which this lower
limit, as the magnetization is further increased, ap-
proaches (wmi+win/2). At this point, as indicated in
Fig. 1, the crack layer itself enters an anomalous condi-
tion, and the bare configuration investigated by Hurd
can no longer be considered an appropriate representa-
tion of the ferrite-filled guide arrangement. It would be
necessary, for instance, to treat the thin ferrite layer
adjacent to the guide wall in the way pursued by
Gerosa [9], taking into account the finite conductivity

607

of the metal wall. If this is done, then an additional sur-
face wave is introduced, and this fulfills the function of
the now no-longer-existing crack wave. As the one goes
out the other comes in! The fact that the crack layer is
thin is irrelevant. It is in an anomalous condition and,
being adjacent to the metal wall, must support a sur-
face wave there,

We conclude that Hurd’s analysis, far from under-
mining the possible role of the surface or crack waves,
goes a long way in support in so far as it discloses that
these waves are always there when needed—a sine qua
non for a nonintrinsic loss explanation.

IV. CoNCLUSIONS

The role, if any, of surface or crack waves in the ab-
sorption of energy in the anomalous region remains un-
determined, though nothing in recent analyses in any
way refutes the idea of their constituting the basic
mechanism. However, irrespective of their role, the
question of the determination of their amplitudes poses
a radically new theoretical problem. Lewin’s postulate
may or may not survive a more thorough investigation,
but some such new principle would appear to be quite
essential to resolve this problem.
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